Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 17(5): 745-767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309455

RESUMO

BACKGROUND & AIMS: Colorectal cancer (CRC) is the third most common cancer in the world. Gut microbiota has recently been implicated in the development of CRC. Actinomyces odontolyticus is one of the most abundant bacteria in the gut of patients with very early stages of CRC. A odontolyticus is an anaerobic bacterium existing principally in the oral cavity, similar to Fusobacterium nucleatum, which is known as a colon carcinogenic bacterium. Here we newly determined the biological functions of A odontolyticus on colonic oncogenesis. METHODS: We examined the induction of intracellular signaling by A odontolyticus in human colonic epithelial cells (CECs). DNA damage levels in CECs were confirmed using the human induced pluripotent stem cell-derived gut organoid model and mouse colon tissues in vivo. RESULTS: A odontolyticus secretes membrane vesicles (MVs), which induce nuclear factor kappa B signaling and also produce excessive reactive oxygen species (ROS) in colon epithelial cells. We found that A odontolyticus secretes lipoteichoic acid-rich MVs, promoting inflammatory signaling via TLR2. Simultaneously, those MVs are internalized into the colon epithelial cells, co-localize with the mitochondria, and cause mitochondrial dysfunction, resulting in excessive ROS production and DNA damage. Induction of excessive DNA damage in colonic cells by A odontolyticus-derived MVs was confirmed in the gut organoid model and also in mouse colon tissues. CONCLUSIONS: A odontolyticus secretes MVs, which cause chronic inflammation and ROS production in colonic epithelial cells, leading to the initiation of CRC.


Assuntos
Colo , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , Colo/microbiologia , Espécies Reativas de Oxigênio , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Células Epiteliais , Bactérias/genética
2.
Biochem Biophys Res Commun ; 682: 216-222, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826945

RESUMO

Fusobacterium nucleatum (Fn) is abundant in the human oral cavity and has been associated with periodontal disease, which in-turn has been linked to respiratory disease development. Tight junctions (TJs) line the airway and alveoli surfaces serving as a first line of defense against multiple pathogens. Fn has already been linked to respiratory diseases, however, how Fn affects the alveolar TJ was not fully elucidated. Here, we designed and analyzed a TJ network, grew Fn cells and inoculated it in vitro (16HBE and primary cells) and in vivo (mice lung), measured transepithelial electrical resistance, performed RT-PCR, checked for in vitro cell and mice lung permeability, and determined air space size through morphometric measurements. We found that Fn can potentially affect TJs proteins that are directly exposed to the alveolar surface. Additionally, Fn could possibly cause neutrophil accumulation and an increase in alveolar space. Moreover, Fn putatively may cause an increase in paracellular permeability in the alveoli.


Assuntos
Células Epiteliais Alveolares , Junções Íntimas , Camundongos , Animais , Humanos , Junções Íntimas/metabolismo , Fusobacterium nucleatum , Pulmão , Permeabilidade , Células Epiteliais/metabolismo
3.
JAMA Netw Open ; 6(1): e2250207, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36622677

RESUMO

This cross-sectional study investigates cell-free viral loads in saliva samples from patients who have been infected with the Omicron variant of SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Saliva
4.
J Theor Biol ; 558: 111376, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36473508

RESUMO

SARS-CoV-2 (SARS2) regularly mutates resulting to variants of concern (VOC) which have higher virulence and transmissibility rates while concurrently evading available therapeutic strategies. This highlights the importance of amino acid mutations occurring in the SARS2 spike protein structure since it may affect virus biology. However, this was never fully elucidated. Here, network analysis was performed based on the COVID-19 genomic epidemiology network between December 2019-July 2021. Representative SARS2 VOC spike protein models were generated and quality checked, protein model superimposition was done, and common contact based on contact mapping was established. Throughout this study, we found that: (1) certain individual variant-specific amino acid mutations can affect the spike protein structural pattern; (2) certain individual variant-specific amino acid mutations had no affect on the spike protein structural pattern; and (3) certain combination of variant-specific amino acids are putatively epistatic mutations that can potentially influence the VOC spike protein structural pattern. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Aminoácidos/genética
5.
J Mol Graph Model ; 119: 108396, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549224

RESUMO

Autophagy is an important cellular process that triggers a coordinated action involving multiple individual proteins and protein complexes while SARS-CoV-2 (SARS2) was found to both hinder autophagy to evade host defense and utilize autophagy for viral replication. Interestingly, the possible significant stages of the autophagy biochemical network in relation to the corresponding autophagy-targeted SARS2 proteins from the different variants of concern (VOC) were never established. In this study, we performed the following: autophagy biochemical network design and centrality analyses; generated autophagy-targeted SARS2 protein models; and superimposed protein models for structural comparison. We identified 2 significant biochemical pathways (one starts from the ULK complex and the other starts from the PI3P complex) within the autophagy biochemical network. Similarly, we determined that the autophagy-targeted SARS2 proteins (Nsp15, M, ORF7a, ORF3a, and E) are structurally conserved throughout the different SARS2 VOC suggesting that the function of each protein is preserved during SARS2 evolution. Interestingly, among the autophagy-targeted SARS2 proteins, the M protein coincides with the 2 significant biochemical pathways we identified within the autophagy biochemical network. In this regard, we propose that the SARS2 M protein is the main determinant that would influence autophagy outcome in regard to SARS2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Autofagia , Replicação Viral
6.
Viruses ; 14(9)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36146707

RESUMO

It is generally accepted that certain viral infections can trigger the development of autoimmune diseases. However, the exact mechanisms by which these viruses induce autoimmunity are still not understood. In this review, we first describe hypothetical mechanisms by which viruses induce some representative autoimmune diseases. Then, we focus on Epstein-Barr virus (EBV) and discuss its role in the pathogenesis of rheumatoid arthritis (RA). The discussion is mainly based on our own previous findings that (A) EBV DNA and its products EBV-encoded small RNA (EBER) and latent membrane protein 1 (LMP1) are present in the synovial lesions of RA, (B) mRNA expression of the signaling lymphocytic activation molecule-associated protein (SAP)/SH2D1A gene that plays a critical role in cellular immune responses to EBV is reduced in the peripheral T cells of patients with RA, and (C) EBV infection of mice reconstituted with human immune system components (humanized mice) induced erosive arthritis that is pathologically similar to RA. Additionally, environmental factors may contribute to EBV reactivation as follows: Porphyromonas gingivalis peptidylarginine deiminase (PAD), an enzyme required for citrullination, engenders antigens leading to the production of citrullinated peptides both in the gingiva and synovium. Anti-citrullinated peptides autoantibody is an important marker for diagnosis and disease activity of RA. These findings, as well as various results obtained by other researchers, strongly suggest that EBV is directly involved in the pathogenesis of RA, a typical autoimmune disease.


Assuntos
Artrite Reumatoide , Infecções por Vírus Epstein-Barr , Animais , Artrite Reumatoide/patologia , Herpesvirus Humano 4/genética , Humanos , Proteínas de Membrana , Camundongos , Desiminases de Arginina em Proteínas , RNA , RNA Mensageiro , Família de Moléculas de Sinalização da Ativação Linfocitária
7.
In Vivo ; 36(2): 649-656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35241518

RESUMO

BACKGROUND/AIM: Despite evidence of an association between pulmonary diseases and periodontopathic bacteria, the molecular mechanisms remain unknown. Matrix metalloproteinase-9 (MMP9) plays important roles in pneumonia, chronic obstructive pulmonary disease, and asthma; therefore, we assessed the effects of Fusobacterium nucleatum on MMP9 expression in mouse lung and A549 human alveolar epithelial cells. MATERIALS AND METHODS: Heat-killed F. nucleatum was administered to the trachea of mice or added to A549 cell cultures. MMP9 expression was determined using real-time PCR and western blotting. The involvement of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) in MMP9 expression was examined. RESULTS: F. nucleatum induced expression of MMP9 in mouse lung and bronchoalveolar lavage fluid. In A549 cells, F. nucleatum induced production of MMP9 protein and mRNA in a density-dependent manner; this was inhibited by inhibitors of extracellular-regulated kinase 1/2 and NF-κB, but not of p38 and Jun N-terminal protein kinase. CONCLUSION: F. nucleatum may contribute to the onset of pulmonary diseases via MMP9 expression through extracellular-regulated kinase 1/2 and NF-κB activation.


Assuntos
Fusobacterium nucleatum , Metaloproteinase 9 da Matriz , Células A549 , Células Epiteliais Alveolares/metabolismo , Animais , Células Epiteliais/metabolismo , Fusobacterium nucleatum/metabolismo , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo
8.
FEBS Open Bio ; 12(3): 638-648, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35034433

RESUMO

Exacerbation of chronic obstructive pulmonary disease (COPD) is associated with disease progression and increased mortality. Periodontal disease is a risk factor for exacerbation of COPD, but little is known about the role of periodontopathic bacteria in this process. Here, we investigated the effects of intratracheal administration of Fusobacterium nucleatum, a periodontopathic bacteria species, on COPD exacerbation in elastase-induced emphysematous mice. The administration of F. nucleatum to elastase-treated mice enhanced inflammatory responses, production of alveolar wall destruction factors, progression of emphysema, and recruitment of mucin, all of which are symptoms observed in patients with COPD exacerbation. Hence, we propose that F. nucleatum may play a role in exacerbation of COPD.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Enfisema/complicações , Fusobacterium nucleatum , Humanos , Camundongos , Elastase Pancreática/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/complicações
9.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054995

RESUMO

Periodontitis is an inflammatory condition that causes the destruction of the supporting tissues of teeth and is a major public health problem affecting more than half of the adult population worldwide. Recently, members of the herpes virus family, such as the Epstein-Barr virus (EBV), have been suggested to be involved in the etiology of periodontitis because bacterial activity alone does not adequately explain the clinical characteristics of periodontitis. However, the role of EBV in the etiology of periodontitis is unknown. This study aimed to examine the effect of inactivated EBV on the expression of inflammatory cytokines in human gingival fibroblasts (HGFs) and the induction of osteoclast differentiation. We found that extremely high levels of interleukin (IL)-6 and IL-8 were induced by inactivated EBV in a copy-dependent manner in HGFs. The levels of IL-6 and IL-8 in HGFs were higher when the cells were treated with EBV than when treated with lipopolysaccharide and lipoteichoic acid. EBV induced IκBα degradation, NF-κB transcription, and RAW264.7 cell differentiation into osteoclast-like cells. These findings suggest that even without infecting the cells, EBV contributes to inflammatory cytokine production and osteoclast differentiation by contact with oral cells or macrophage lineage, resulting in periodontitis onset and progression.


Assuntos
Citocinas/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Citocinas/genética , Infecções por Vírus Epstein-Barr/virologia , Expressão Gênica , Gengiva/citologia , Gengiva/virologia , Camundongos , Células RAW 264.7 , Transdução de Sinais
10.
Biochem Biophys Res Commun ; 589: 35-40, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34891039

RESUMO

Porphyromonas gingivalis (Pg) a major periodontal pathogen involved in periodontal disease development and progression. Moreover, Pg has two fimbriae surface proteins (FimA and Mfa1) that are genetically distinct and make-up the fimbrial shaft which in-turn form crucial attachment to oral bacteria and multiple host cells. However, unlike FimA, Mfa1 attachment to non-periodontal cells has not been fully elucidated. Considering Pg-associated periodontal disease contributes to pulmonary disease development, we investigated whether Mfa1 can functionally interact with human bronchial epithelial cells and, likewise, trigger a functional response. Initially, we simulated molecular docking and performed both luciferase and neutralization assays to confirm Mfa1-related functional interaction. Subsequently, we treated BEAS-2B cells with purified Mfa1 and performed cytokine quantification through real time-PCR and ELISA to establish Mfa1-related functional response. We found that both Mfa1-TLR2 and Mfa1-TLR4 docking is possible, however, only Mfa1-TLR2 showed a functional interaction. Additionally, we observed that both IL-8 and IL-6 gene expression and protein levels were induced confirming Mfa1-related functional response. Taken together, we propose that BEAS-2B human bronchial epithelial cells are able to recognize Pg Mfa1 and induce both IL-8 and IL-6 inflammatory responses.


Assuntos
Proteínas de Bactérias/metabolismo , Brônquios/patologia , Células Epiteliais/metabolismo , Proteínas de Fímbrias/metabolismo , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Porphyromonas gingivalis/fisiologia , Receptor 2 Toll-Like/metabolismo , Linhagem Celular , Fímbrias Bacterianas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Porphyromonas gingivalis/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
11.
Front Genet ; 12: 773726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745235

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic has been attributed to SARS-CoV-2 (SARS2) and, consequently, SARS2 has evolved into multiple SARS2 variants driving subsequent waves of infections. In particular, variants of concern (VOC) were identified to have both increased transmissibility and virulence ascribable to mutational changes occurring within the spike protein resulting to modifications in the protein structural orientation which in-turn may affect viral pathogenesis. However, this was never fully elucidated. Here, we generated spike models of endemic HCoVs (HCoV 229E, HCoV OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV), original SARS2, and VOC (alpha, beta, gamma, delta). Model quality check, structural superimposition, and structural comparison based on RMSD values, TM scores, and contact mapping were all performed. We found that: 1) structural comparison between the original SARS2 and VOC whole spike protein model have minor structural differences (TM > 0.98); 2) the whole VOC spike models putatively have higher structural similarity (TM > 0.70) to spike models from endemic HCoVs coming from the same phylogenetic cluster; 3) original SARS2 S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM = 1.0) and S1-NTD (TM > 0.96); and 4) endemic HCoV S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM > 0.70) and S1-NTD (TM > 0.70) models belonging to the same phylogenetic cluster. Overall, we propose that structural similarities (possibly ascribable to similar conformational epitopes) may help determine immune cross-reactivity, whereas, structural differences (possibly associated with varying conformational epitopes) may lead to viral infection (either reinfection or breakthrough infection).

12.
Jpn Dent Sci Rev ; 57: 224-230, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34760030

RESUMO

The global population is aging, and elderly people have a higher incidence of lower airway diseases owing to decline in swallowing function, airway ciliary motility, and overall immunity associated with aging. Furthermore, lower airway diseases in the elderly tend to have a high mortality rate. Their prevention is important for extending healthy life expectancy and improving the quality of life of each individual. In recent years, the relationship between "chronic periodontitis and oral bacteria, especially the periodontopathic ones" and "respiratory diseases" (e.g., pneumonia, chronic obstructive pulmonary disease, and influenza) has become clear. In addition, the association of several periodontal pathogens with the onset and aggravation of coronavirus disease 2019 (COVID-19) is also being reported. In support of these findings, oral health management has shown to reduce deaths from pneumonia and prevent influenza in nursing homes and inpatient wards. This has led to clinical and multidisciplinary cooperation between physicians and dentists, among others. However, to date, the mechanisms by which "chronic periodontitis and oral bacteria" contribute to lower airway diseases have not been well understood. Clarifying these mechanisms will lead to a theoretical basis for answering the question, "Why is oral health management effective in preventing lower airway diseases?"

13.
Antibiotics (Basel) ; 10(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356737

RESUMO

Controlling the oral microbial flora is putatively thought to prevent not only oral diseases, but also systemic diseases caused by oral diseases. This study establishes the antibacterial effect of the novel bioactive substance "S-PRG filler" on oral bacteria. We examined the state of oxidative stress caused by the six types of ions released in eluate from the S-PRG filler in oral bacterial cells. Moreover, we investigated the effects of these ions on the growth and pathogenicity of Gram-positive and Gram-negative bacteria. We found that the released ions affected SOD amount and hydrogen peroxide in bacterial cells insinuating oxidative stress occurrence. In bacterial culture, growth inhibition was observed depending on the ion concentration in the medium. Additionally, released ions suppressed Streptococcus mutans adhesion to hydroxyapatite, S. oralis neuraminidase activity, and Porphyromonas gingivalis hemagglutination and gingipain activity in a concentration-dependent manner. From these results, it was suggested that the ions released from the S-PRG filler may suppress the growth and pathogenicity of the oral bacterial flora. This bioactive material is potentially useful to prevent the onset of diseases inside and outside of the oral cavity, which in turn may have possible applications for oral care and QOL improvement.

14.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207046

RESUMO

More than a year ago, the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic by the World Health Organization, with the world approaching its fourth wave. During this period, vaccines were developed in a much shorter period than thought possible, with the initiation of the pertinent vaccination. However, oral cavities have come under renewed scrutiny worldwide because saliva, a mixture of salivary secretions, pharyngeal secretions, and gingival crevicular fluid, have not only been shown to contain infective viral loads, mediating the route of SARS-CoV-2 transmission via droplet, aerosol, or contagion, but also used as a sample for viral RNA testing with a usefulness comparable to the nasopharyngeal swab. The oral cavity is an important portal for ingress of SARS-CoV-2, being an entryway to the bronchi, alveoli, and rest of the lower respiratory tract, causing inflammation by viral infection. Moreover, angiotensin-converting enzyme 2, a host receptor for SARS-CoV-2, coupled with proteases responsible for viral entry have been found to be expressed on the tongue and other oral mucosae, suggesting that the oral cavity is the site of virus replication and propagation. Furthermore, there is a possibility that the aspiration of oral bacteria (such as periodontal pathogens) along with saliva into the lower respiratory tract may be a complicating factor for COVID-19 because chronic obstructive pulmonary disease and diabetes are known COVID-19 comorbidities with a greater risk of disease aggravation and higher death rate. These comorbidities have a strong connection to chronic periodontitis and periodontal pathogens, and an oral health management is an effective measure to prevent these comorbidities. In addition, oral bacteria, particularly periodontal pathogens, could be proinflammatory stimulants to respiratory epithelia upon its exposure to aspirated bacteria. Therefore, it may be expected that oral health management not only prevents comorbidities involved in aggravating COVID-19 but also has an effect against COVID-19 progression. This review discusses the significance of oral health management in SARS-CoV-2 infection in the era of "the new normal with COVID-19" and COVID-19 prevention with reference to the hypothetical mechanisms that the authors and the other researchers have proposed.


Assuntos
Saúde Bucal , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/virologia , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Língua/metabolismo , Internalização do Vírus
15.
Dent Mater J ; 40(6): 1365-1372, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34234047

RESUMO

The antimicrobial effects of denture adhesives containing novel surface pre-reacted glass-ionomer (S-PRG) fillers were assessed. We prepared denture adhesives containing S-PRG (particle sizes: 1 and 3 µm; quantities: 5, 7.5, and 10 wt%). We evaluated acid buffering capacity, ion release, and antimicrobial effects of denture adhesives with and without S-PRG. Significantly higher pH changes were observed in 1 µm S-PRG adhesives than in 3 µm S-PRG adhesives. Adhesives containing 7.5 and 10 wt% S-PRG exhibited significantly higher ion release than adhesives with 5 wt% S-PRG. The 1µm-10wt% S-PRG denture adhesive exhibited significantly lower colony-forming units on the denture adhesive contact surface than in the control group; additionally, it exhibited excellent acid buffering capacity, ion release properties, and antimicrobial effect against C. albicans, C. glabrata, S. mutans, and A. naeslundii. Longer contact periods resulted in significantly lower adhesion of Candida albicans to the denture base resin treated with denture adhesive.


Assuntos
Cimentos Dentários , Cimentos de Ionômeros de Vidro , Antibacterianos , Candida albicans , Dentaduras
16.
FEBS Lett ; 595(11): 1604-1612, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33792027

RESUMO

Streptococcus pneumoniae causes pneumonia by infecting the alveolar epithelium via binding to host receptors, such as the platelet-activating factor receptor (PAFR). Although chronic periodontitis has been identified as a pneumonia risk factor, how periodontopathic bacteria cause pneumonia is not known. We found that S. pneumoniae adhered to PAFR expressed on A549 human alveolar epithelial cells stimulated by Porphyromonas gingivalis culture supernatant, and this was abrogated by a PAFR-specific inhibitor. Among the major virulence factors of P. gingivalis [lipopolysaccharide (LPS), fimbriae and gingipains (Rgps and Kgp)], PAFR expression and pneumococcal adhesion were executed in an Rgp-dependent manner. LPS and fimbriae did not induce PAFR expression. Hence, our findings suggest that P. gingivalis enhances pneumococcal adhesion to human alveoli by inducing PAFR expression and that gingipains are responsible for this.


Assuntos
Cisteína Endopeptidases Gingipaínas/farmacologia , Glicoproteínas da Membrana de Plaquetas/genética , Porphyromonas gingivalis/metabolismo , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Fatores de Virulência/farmacologia , Células A549 , Aderência Bacteriana/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Fímbrias Bacterianas/química , Regulação da Expressão Gênica , Cisteína Endopeptidases Gingipaínas/deficiência , Cisteína Endopeptidases Gingipaínas/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Lipopolissacarídeos/farmacologia , Modelos Biológicos , Glicoproteínas da Membrana de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/patogenicidade , Alvéolos Pulmonares/microbiologia , RNA Mensageiro/agonistas , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Virulência/deficiência , Fatores de Virulência/genética
17.
PLoS One ; 16(4): e0249340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33793647

RESUMO

Many human viruses, including Epstein-Barr virus (EBV), do not infect mice, which is challenging for biomedical research. We have previously reported that EBV infection induces erosive arthritis, which histologically resembles rheumatoid arthritis, in humanized NOD/Shi-scid/IL-2Rγnull (hu-NOG) mice; however, the underlying mechanisms are not known. Osteoclast-like multinucleated cells were observed during bone erosion in this mouse model, and therefore, we aimed to determine whether the human or mouse immune system activated bone erosion and analyzed the characteristics and origin of the multinucleated cells in hu-NOG mice. Sections of the mice knee joint tissues were immunostained with anti-human antibodies against certain osteoclast markers, including cathepsin K and matrix metalloproteinase-9 (MMP-9). Multinucleated cells observed during bone erosion stained positively for human cathepsin K and MMP-9. These results indicate that human osteoclasts primarily induce erosive arthritis during EBV infections. Human osteoclast development from hematopoietic stem cells transplanted in hu-NOG mice remains unclear. To confirm their differentiation potential into human osteoclasts, we cultured bone marrow cells of EBV-infected hu-NOG mice and analyzed their characteristics. Multinucleated cells cultured from the bone marrow cells stained positive for human cathepsin K and human MMP-9, indicating that bone marrow cells of hu-NOG mice could differentiate from human osteoclast progenitor cells into human osteoclasts. These results indicate that the human immune response to EBV infection may induce human osteoclast activation and cause erosive arthritis in this mouse model. Moreover, this study is the first, to our knowledge, to demonstrate human osteoclastogenesis in humanized mice. We consider that this model is useful for studying associations of EBV infections with rheumatoid arthritis and human bone metabolism.


Assuntos
Artrite/patologia , Diferenciação Celular , Herpesvirus Humano 4/fisiologia , Osteogênese , Animais , Artrite/metabolismo , Artrite/virologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/virologia , Catepsina K/imunologia , Catepsina K/metabolismo , Modelos Animais de Doenças , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Metaloproteinase 9 da Matriz/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Osteoclastos/citologia , Osteoclastos/metabolismo , Microtomografia por Raio-X
18.
Front Med (Lausanne) ; 8: 613412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777970

RESUMO

The SARS-CoV-2 (SARS2) is the cause of the coronavirus disease 2019 (COVID-19) pandemic. One unique structural feature of the SARS2 spike protein is the presence of a furin-like cleavage site (FLC) which is associated with both viral pathogenesis and host tropism. Specifically, SARS2 spike protein binds to the host ACE-2 receptor which in-turn is cleaved by furin proteases at the FLC site, suggesting that SARS2 FLC structural variations may have an impact on viral infectivity. However, this has not yet been fully elucidated. This study designed and analyzed a COVID-19 genomic epidemiology network for December 2019 to July 2020, and subsequently generated and analyzed representative SARS2 spike protein models from significant node clusters within the network. To distinguish possible structural variations, a model quality assessment was performed before further protein model analyses and superimposition of the protein models, particularly in both the receptor-binding domain (RBD) and FLC. Mutant spike models were generated with the unique 681PRRA684 amino acid sequence found within the deleted FLC. We found 9 SARS2 FLC structural patterns that could potentially correspond to nine node clusters encompassing various countries found within the COVID-19 genomic epidemiology network. Similarly, we associated this with the rapid evolution of the SARS2 genome. Furthermore, we observed that either in the presence or absence of the unique 681PRRA684 amino acid sequence no structural changes occurred within the SARS2 RBD, which we believe would mean that the SARS2 FLC has no structural influence on SARS2 RBD and may explain why host tropism was maintained.

19.
J Oral Sci ; 63(2): 174-178, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33731508

RESUMO

PURPOSE: The present study aimed to identify dysregulated exosomal miRNAs associated with diagnostic and therapeutic biomarkers in oral squamous cell carcinoma (OSCC). METHODS: Microarray analysis was used to compare expression profiles of exosomal miRNAs in the OSCC-derived cell lines HSC-2, HSC-3, Ca9-22, and HO-1-N1 with those in human normal keratinocytes (HNOKs). The identified OSCC-related miRNAs and their potential target genes were analyzed with bioinformatic analyses, and the data were subjected to Ingenuity Pathway Analysis (IPA) to clarify functional networks and gene ontologies of the identified exosomal miRNAs secreted by OSCC cells. RESULTS: Comparison with HNOKs detected 8 upregulated and 12 downregulated miRNAs in OSCC-secreted exosomes. The potential target mRNAs of these dysregulated miRNAs were suggested by IPA, and 6 significant genetic networks were indicated by genetic network analysis. Furthermore, 4 crucial upstream miRNAs-miR-125b-5p, miR-17-5p, miR-200b-3p, and miR-23a-3p-were identified. miR-125b-5p was a central node in the most significant network. Gene ontology analysis showed significant enrichment of genes with cancer-related functions, such as molecular mechanisms of cancer, cell cycle, and regulation of the epithelial-mesenchymal transition. CONCLUSION: These results provide a comprehensive view of the functions of dysregulated exosomal miRNAs in OSCC, thus illuminating OSCC tumorigenesis and development.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Biologia Computacional , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço
20.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572938

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global public health emergency. Periodontitis, the most prevalent disease that leads to tooth loss, is caused by infection by periodontopathic bacteria. Periodontitis is also a risk factor for pneumonia and the exacerbation of chronic obstructive pulmonary disease, presumably because of the aspiration of saliva contaminated with periodontopathic bacteria into the lower respiratory tract. Patients with these diseases have increased rates of COVID-19 aggravation and mortality. Because periodontopathic bacteria have been isolated from the bronchoalveolar lavage fluid of patients with COVID-19, periodontitis may be a risk factor for COVID-19 aggravation. However, the molecular links between periodontitis and COVID-19 have not been clarified. In this study, we found that the culture supernatant of the periodontopathic bacterium Fusobacterium nucleatum (CSF) upregulated the SARS-CoV-2 receptor angiotensin-converting enzyme 2 in A549 alveolar epithelial cells. In addition, CSF induced interleukin (IL)-6 and IL-8 production by both A549 and primary alveolar epithelial cells. CSF also strongly induced IL-6 and IL-8 expression by BEAS-2B bronchial epithelial cells and Detroit 562 pharyngeal epithelial cells. These results suggest that when patients with mild COVID-19 frequently aspirate periodontopathic bacteria, SARS-CoV-2 infection is promoted, and inflammation in the lower respiratory tract may become severe in the presence of viral pneumonia.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Meios de Cultivo Condicionados/química , Citocinas/metabolismo , Fusobacterium nucleatum/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , SARS-CoV-2/isolamento & purificação , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...